Mohammad Pasande

□ (+98) 9194845513 | 🗷 mohammadpasande96@gmail.com | 🏕 mopsd.github.io | 🛅 mohammad-pasande-9a6951163

Education _

University of Tehran (UT)

Tehran, Iran

M.Sc. in Electrical Engineering (Control Major)

Sep 2019 - Feb 2023

- GPA: 17.05/20.00 (3.65/4.00)
- Thesis: Online Learning for Large Scale Mixture Model.
- Supervisors: Dr. Reshad Hosseini & Dr. Babak N. Araabi

Imam Khomeini International University (IKIU)

Oazvin, Iran

Sep 2014 - Sep 2018

B.Sc. in Electrical Engineering (Control Major)

- GPA: 17.25/20.00 (3.64/4.00)
- Thesis: Robust PID Controller Design using Kharitonov Theorem and Stability Boundary Locus (SBL) Method
- Supervisor: Dr. Mehdi Rahmani

Interested Area

- Optimization
- Machine Learning Theory
- System Est. & Optimal Control
- Game Theory
- Causality

Skills ____

Computer Skills

Proficient: Python, MATLAB. Intermediate: R, Git, ŁTĘX

Hardware Des. Language (HDL) Proficient: VHDL. Intermediate: Verilog.

Software

MATLAB, Spyder, Google Colab, RStudio, Visual Studio Code, ISE Design Suite, TexStudio, Microsoft Excel, Word, PowerPoint.

Languages

· Farsi: Native

• English: Proficient - TOEFL Overall: 98 (R: 25 - L:28 - S: 22 - W: 23).

Academic Projects ____

M.Sc. Thesis: Implementation, modification and visualization of following subjects as object oriented code in python (more specifically using Pytorch & NumPy) and MATLAB:

· Manifold Optimization,

• Gaussian Mixture Models and their properties,

· Stochastic Optimization,

• Flow-Based Models (Deep Neural Networks)

B.Sc. Thesis: Research on following topics and implementing codes in MATLAB:

• Kharitonov Theorem and Robust Control Theory

• Stability Boundary Locus and Convex Optimization

Machine Learning: In-course exercises (using Python libraries such as NumPy, SciPy and Scikit-Learn) on:

· Density Estimation,

· Dimensionality Reduction Technique,

· Classifiers,

· Clustering & Unsupervised Learning

Deep Learning: All studies were implemented with the TensorFlow (Keras) framework and Numpy library in needed cases,

- A comparative study on ARIMA, RNNs and CNN-LSTM for time series forecasting
- DCGAN model for image generating
- Supervised learning and Transfer Learning of CNN for image classification
- Deep Reinforcement Learning (Deep Q-Learning) on frozen lake game

• Implementation of Sequential Models for text generation

Numerical Optimization: (In Progress) Implementation of following tasks using Pytorch framework:

• First & Second order Methods,

• Linear and Nonlinear Conjugate Gradient Method,

MetaHeuristic Methods,

· Gauss-Newton & Levenberg-Marquardt Method.

· Quasi Newton Methods,

Statistical Inference: Practical implementation of following topics using R as processing and visualization tool:

- Linear Regression model, Logistic Regression model
- Multiple parametric & Non-parametric statistical tests

System Estimation & Identification: Conceptual and practical practices (Using MATLAB) on:

- Least Squares (LS) and its extensions,
- Prediction error method (PEM),
- MLP, RBF

- Fuzzy and NeuroFuzzy models,
- · Nonlinear Optimization methods.

Cognitive Neuroscience:

- · Semantic Priming,
- Prediction of personal morality index,
- Implementation of a cognitive task using PsychoPy,

Game Theory: In-course exercises(using MATLAB) on:

- Simple-form and Extensive-form game,
- · Bayesian games,
- Nash bargaining Solution in cooperative games,

- Development of behavioral model for Iowa gambling task,
- · Lie detection using EEG signal,
- (basic knowledge of FMRI data and FSL).
- · Learning in Games,
- Evolutionary games and mimimax Q-Learning in games.

Optimal Control and Nonlinear Systems:

- Simulation of a single neuron behavior
- Simulation of a 2-lane train passage, linearization, and design LQR optimal controller
- Simulation of a single connection servo motor crankshaft, linearization, and design state feedback compensator

Publication _____

Journal Papers

UNDER REVIEW

• Pasande M, Hosseini R, Araabi BN. (2023). Stochastic First-Order Learning for Large-Scale Flexibly-Tied Gaussian Mixture Model. arXiv preprint arxiv 2212.05402

Selected Courses _____

M.Sc. Courses:

- NN & Deep Learning (17.0/20.0),
- Statistical Inference (18.8/20.0),

B.Sc. Courses:

- Operation Research (19.0/20.0),
- Digital Control Systems (18.6/20.0),

- System Est. & Identification (19.0/20.0),
- Game Theory (19.3/20.0),
- Modern Control Systems (17.5/20.0),
- Mechatronics (20.0/20.0)

Experience _____

Teacher Assistant Iran

- UT 2019 2022
 - M.Sc Courses
 - * System Estimation and Identification (Two semesters)
 - * Neural Networks & Deep Learning (Three consecutive semesters)
- B.Sc Courses
 - * Intelligent Systems (Cheif TA)

- * Optimal Control
- * Statistical Inference
- * Game Theory
- * Linear Control System (Two semesters)

- IKIU 2015 2018
 - B.Sc Courses
 - * Basic Physics II
 - * Numerical Mathematics
 - * Circuit Theory I

- * Logic Circuit I & II
- * Linear & Digital Control System Lab

Algorithm Developer at SEDNA

Tehran, Iran

2015 - 2022

ML ENGINEER - PART-TIME

August 2021 – March 2023

• Due to the building's rules and regulations in Iran, the thermostats usually contain both power and control board together; hence the power board makes unwanted heat which disturbs the sensor's data. I came up with the idea of designing a test environment to model the distribution and model it using ML techniques. (Sensorless Calibration)

Teaching Iran

TEACHER 2015 - 2018

- Linear, Digital & Modern Control System using MATLAB
- Design of logic circuit with FPGA using VHDL

Honors _____

2019	Ranked 10th and 11th , in the Iranian university entry exam for master students of Bioelectrical
	engineering and Control of participants of the Iranian university entry exam
2018	Ranked 3rd GPA, among graduating students of EE-control major in B.Sc. at IKIU (class 2014)
2014	Ranked within top 1.5%, of 180000 participants of the Iranian university entry exam
2013	Qualified for the second stage, of physics student olympiad

References _

- Dr. Babak N. Araabi, Professor, Department of Electrical and Computer Engineering, UT, Tehran, Iran, araabi@ut.ac.ir .
- Dr. Reshad Hosseini, Assistant Professor, Department of Electrical and Computer Engineering, UT, Tehran, Iran, reshad.hosseini@ut.ac.ir.
- Dr. Mehdi Rahmani, Associate Professor, Department of Electrical Engineering, IKIU, Qazvin, Iran, mrahmani@eng.ikiu.ac.ir .