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Preliminaries

Gaussian Mixture (GM)

N (x|µ,Σ−1) =
1

(2π)D/2

1

|Σ|1/2
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
(1)

p(x) =
K∑

k=1

πkN (x|µk , Σ−1
k )

s. t. πk ≥ 0 &
K∑

k=1

πk = 1.

ζTΣ−1ζ ≥ 0 (∀ζ ∈ RD).
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‘Many years ago I called the Laplace–Gaussian curve the normal
curve, which name, while it avoids an international question of
priority, has the disadvantage of leading people to believe that
all other distributions of frequency are in one sense or another
”abnormal”.’ Karl Pearson
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Preliminaries

Gaussian Mixture Model (GMM)
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Preliminaries

Parameter Estimation

Expectation Maximization (EM, CEM, Incr-EM, ...)

Neural Networks (Mixture Density Networks)
Numerical Optimization

loss := L(πk , µk , Σ
−1
k ) = −

N∑
i=1

log

{ K∑
k=1

πkN (xi |µk , Σk)

}
NLL (2)

minimize
θ

L(πk , µk , Σ
−1
k )

subject to πk ≥ 0 &
K∑

k=1

πk = 1.

Σ−1
k � 0.

(3)
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The Proposed Hybrid Algorithm outperforms others in both
convergence and time performance.[Asheri et al., 2021]
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Preliminaries

The Passion Of Constraints!

πk Constraint:

πj =
exp (ηj)∑K

k=1 exp (ηk)
AKA: SoftMax. Dobby is FREE!

Σ−1
k Constraint:

Cholesky Decomposition:
Σ−1 = LDLT

Reformulation Trick [Hosseini and Sra, 2015] :

Sk =

(
Σ−1

k + µkµ
T
k µk

µTk 1

)
; y =

(
x 1

)T
Semi-Tied [Gales, 1999] :

Σ−1
k = UDkU

T
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Preliminaries

How About UDUT?

Simplify the Σ−1 as much as you can!

put the orthogonal constraint on U :

UUT = ID ⇒ det(Σ−1
k ) =

D∏
j=1

d
(j)
k

consider each d
(j)
k is a SoftPlus output:

d
(j)
k =

1

β
log
(
1 + exp(βd̂

(j)
k )
)
⇒ Dk � 0

inject more flexibility using component-wise scaler:

UDkU
T → λkUDkU

T
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Optimization

Orthonormality
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O(n) = {X ∈ Rn×n : XTX = In} → SO(n) = {X ∈ O(n) : det(X) = +1}

[Huang et al., 2018]

[Bansal et al., 2018]

Double Soft Orthogonality λ(‖WTW − I‖F + ‖WWT − I‖F )

Mutual Coherence λ(‖WTW − I‖∞)

Spectral Restricted Isometry Property λ(Supz∈Rn,z 6=0|
‖(Wz‖
‖z‖

− 1|)



Optimization

Riemannian Manifold

(Let There be Light)

‘ To deal with hyper-planes in a 14-dimensional space, visualize a 3-D space and say
”fourteen” to yourself very loudly. Everyone does it.’ Geoffrey E. Hinton
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You might want to sit down for this

Better

Riemannian Metric := < ., . >x

Bilinear

Symmetric

Positive Definite

{x ∈ Rn+1 | ‖x‖2 = 1}
g : TxM× TxM→ R
γ0(t) : Geodesic

∇E f and ∇f indicate the
Edulidian gradient and
Riemannian gradient

Expx (·) : Exponential Map

Rx (·) : Retraction function
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Optimization

Stochastic Gradient Descent on GMM [Hosseini and Sra, 2020]

fi (ηk , Sk) := log

{ K∑
k=1

exp (ηk)∑K
j=1 exp (ηj)

N (yi ; 0, Sk)

}
+

1

n

(
K∑

k=1

ψ(Sk ; Ψ) + φ({ηk}K−1
k=1 ; ζ)

)
,

{
{Sk � 0}Kk=1, {ηk}K−1

k=1

}
← Ret

(
ηt∇fi

(
{Sk � 0}Kk=1, {ηk}K−1

k=1

))
.

(4)

Note.

In case of Sk ,
(
∇fi (.)

)
refers to the Riemannian gradient which can be achieved by mapping

the Euclidean gradient
(
∇Efi (.)

)
on the manifold of Symmetric Positive Definite (SPD)

matrices.
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Proposed Method

General SGD for GMM

Algorithm 1 SGD GMM using UDkU
T

1: Initial values of U , D̂k , ηk and µk ;
2: while epoch < MaxNo.Epochs do
3: for each Train iteration do
4: ∇ELi : Compute Stochastic Euclidean Gradient;
5: Take a Stochastic Gradient step;
6: Compute the negative log-likelihood;
7: end for

8: end while
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Proposed Method

Is it working?
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Using CD-FNMRES EM Using ADAM Using vanilla EM (Kmeans initialization)



Proposed Method

Controlled Datasets

Separation:
∀ i 6= j ‖µi − µj‖ ≥ c max

i,j
{tr(Σi), tr(Σi)}

High Sep. : c = 10, Mid Sep. : c = 1, Low Sep. : c = 0.1

Smallest Eigenvalue : e = 10

No. of Clusters : K = 5 No. of Dimensions : d = 5

No. of Data Points : 10d2, 100d2, 1000d2

No. of Tests : N = 10

Errors:

Averaged NLL over N Tests
Frobenius norm of differences for Covariance matrices
Cosine similarity distance of differences for Mean Vectors
difference of L2 Norms for weight Vectors
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Proposed Method

High Sep. NLL
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25000 datapoints

2500 datapoints

250 datapoints



Proposed Method

Mid Sep. NLL
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25000 datapoints

2500 datapoints
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Proposed Method

Low Sep. NLL
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25000 datapoints

2500 datapoints
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Experiments

Experiment Setup

DataSet No. Sample Dimension Description
WAVE 5000 21 Waveform Database Generator Generator generating 3 classes of waves.

Each class is generated from a combination of 2 of 3 ”base” waves.

SVHN 99289 32× 32 The dataset is obtained from house numbers in Google Street View images.

There are 531,131 additional samples that we do not use.

USPS 7291 16× 16 The dataset contains normalized handwritten digits, automatically scanned

from envelopes by the U.S. Postal Service.

YEAR 515345∗ 90 The dataset are audio features from different songs. It has been gathered

to be utilized to predict the release year of a song.

Table: DataSet Description

∗
125000 of that had been used in tests
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The proportion is 80% Train set and 20% Test set in all Datasets.

Dimension reduction with explained variance consideration is applied to data
in some cases.

Data had been whitened before entering the procedure.

Number of components is fixed to dimension of dataset.

Batch Size is always 128

Single CPU Core was used

Cosine Annealing was used for step-size decay
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Experiments

Experiment Results (WAVE[21])
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Method NLL Time per epoch Comments

Adam Euclidean 29.57 0.49± 0.01s

ACClip Euclidean 29.58 0.57± 0.01s

Adam Euclidean PLU 29.54 0.72± 0.04s

Adam Manifold 29.99 0.43± 0.01s qr Ret

ACClip Manifold 29.51 0.65± 0.02s qr Ret

CD-FNMRES 29.53 0.23± 0.03s 27-73

Table: Time performance
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Experiment Results (SVHN[30])
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Method NLL Time per epoch Comments

Adam Euclidean 24.37 15.45± 0.45s

ACClip Euclidean 21.33 16.33± 0.57s

Adam Euclidean PLU 25.31 24.18± 1.51s

Adam Manifold 24.36 12.72± 0.39s qr Ret

ACClip Manifold 21.57 14.71± 0.37s qr Ret

CD-FNMRES 29.53 4.55± 0.57s 27-73

Table: Time performance
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Experiment Results (USPS[65])
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Method NLL Time per epoch Comments

Adam Euclidean 62.51 4.43± 0.44s

ACClip Euclidean 59.73 4.75± 0.37s

Adam Euclidean PLU 80.24 8.95± 0.94s

Adam Manifold 78.47 3.77± 0.40s qr Ret

ACClip Manifold 62.52 5.25± 0.37s qr Ret

CD-FNMRES 59.66 15.75± 8.37s 27-73

Table: Time performance
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Experiment Results (YEAR[90])
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Method NLL Time per epoch Comments

Adam Euclidean 98.16 94.63± 5.53s

ACClip Euclidean 97.31 103.34± 5.87s

Adam Euclidean PLU 100.31 195.47± 16.31s

Adam Manifold 101.61 78.13± 4.07s qr Ret

ACClip Manifold 98.22 97.37± 3.72s qr Ret

CD-FNMRES 97.74 141.06± 60.20s 27-73

Table: Time performance
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Experiment Results (SVHN[100])
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Method NLL Time per epoch Comments

Adam Euclidean 83.90 83.37± 6.49s

ACClip Euclidean 85.95 90.41± 6.54s

Adam Euclidean PLU 88.82 185.96± 19.33s

Adam Manifold 85.54 86.04± 3.19s qr Ret

ACClip Manifold 63.57 85.01± 13.34s qr Ret

CD-FNMRES 72.17 216.30± 107.42s 27-73

Table: Time performance
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Experiments

Flow-based Deep Generative Models
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[Kingma and Dhariwal, 2018]
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Experiments

GLOW Results
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Conclusion

Discussion
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Parameter Estimation is HARD! [Kolouri et al., 2018]

We have investigated the online numerical solution for
parameter estimation off GMM in sharing parameter
scheme.

An online optimization algorithm on SO(n) is proposed
which has been tested on both GMM and GLOW.

The PLU factorization was shown to be not suitable for
GMM parameter estimation.
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Thanks for Your Attention
Please feel free to share comments or ask questions!
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